148 research outputs found

    Carbon antisite clusters in SiC: a possible pathway to the D_{II} center

    Full text link
    The photoluminescence center D_{II} is a persistent intrinsic defect which is common in all SiC polytypes. Its fingerprints are the characteristic phonon replicas in luminescence spectra. We perform ab-initio calculations of vibrational spectra for various defect complexes and find that carbon antisite clusters exhibit vibrational modes in the frequency range of the D_{II} spectrum. The clusters possess very high binding energies which guarantee their thermal stability--a known feature of the D_{II} center. The di-carbon antisite (C_{2})_{Si} (two carbon atoms sharing a silicon site) is an important building block of these clusters.Comment: RevTeX 4, 6 pages, 3 figures Changes in version 2: Section headings, footnote included in text, vibrational data now given for neutral split-interstitial, extended discussion of the [(C_2)_Si]_2 defect incl. figure Changes version 3: Correction of binding energy for 3rd and 4th carbon atom at antisite; correction of typo

    Self-vacancies in Gallium Arsenide: an ab initio calculation

    Full text link
    We report here a reexamination of the static properties of vacancies in GaAs by means of first-principles density-functional calculations using localized basis sets. Our calculated formation energies yields results that are in good agreement with recent experimental and {\it ab-initio} calculation and provide a complete description of the relaxation geometry and energetic for various charge state of vacancies from both sublattices. Gallium vacancies are stable in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state for intrinsic and n-type GaAs, confirming results from positron annihilation. Interestingly, Arsenic vacancies show two successive negative-U transitions making only +1, -1 and -3 charge states stable, while the intermediate defects are metastable. The second transition (-/-3) brings a resonant bond relaxation for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page

    Structure and vibrational spectra of carbon clusters in SiC

    Full text link
    The electronic, structural and vibrational properties of small carbon interstitial and antisite clusters are investigated by ab initio methods in 3C and 4H-SiC. The defects possess sizable dissociation energies and may be formed via condensation of carbon interstitials, e.g. generated in the course of ion implantation. All considered defect complexes possess localized vibrational modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the compact antisite clusters exhibit high-frequency LVM's up to 250meV. The isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of these results, the photoluminescence centers D_{II} and P-U are discussed. The dicarbon antisite is identified as a plausible key ingredient of the D_{II}-center, whereas the carbon split-interstitial is a likely origin of the P-T centers. The comparison of the calculated and observed high-frequency modes suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.

    Breakdown of cation vacancies into anion vacancy-antisite complexes on III-V semiconductor surfaces

    Get PDF
    An asymmetric defect complex originating from the cation vacancy on (110) III-V semiconductor surfaces which has significantly lower formation energy than the ideal cation vacancy is presented. The complex is formed by an anion from the top layer moving into the vacancy, leaving an anion antisite–anion vacancy defect complex. By calculating the migration barrier, it is found that any ideal cation vacancies will spontaneously transform to this defect complex at room temperature. For stoichiometric semiconductors the defect formation energy of the complex is close to that of the often-observed anion vacancy, giving thermodynamic equilibrium defect concentrations on the same order. The calculated scanning tunneling microscopy (STM) plot of the defect complex is also shown to be asymmetric in the [11¯0] direction, in contrast to the symmetric one of the anion vacancy. This might therefore explain the two distinct asymmetric and symmetric vacancy structures observed experimentally by STM

    The growth exponent for planar loop-erased random walk

    Full text link
    We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any two-dimensional discrete lattice.Comment: 62 pages, 7 figures; fixed typos, added reference

    Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study

    Get PDF
    Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (O-C) and a hyperdeep double donor on the Si site (O-Si). In 4H-SiC O-C is still a double donor but with a more localized electron state. In 3C-SiC O-C is substantially more stable under any condition than O-Si or interstitial oxygen (O-i). In 4H-SiC O-C is also the most stable one except for heavy n-type doping. We propose that O-C is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed

    Diffusion of Pt dimers on Pt(111)

    Full text link
    We report the results of a density-functional study of the diffusion of Pt dimers on the (111) surface of Pt. The calculated activation energy of 0.37 eV is in {\em exact} agreement with the recent experiment of Kyuno {\em et al.} \protect{[}Surf. Sci. {\bf 397}, 191 (1998)\protect{]}. Our calculations establish that the dimers are mobile at temperatures of interest for adatom diffusion, and thus contribute to mass transport. They also indicate that the diffusion path for dimers consists of a sequence of one-atom and (concerted) two-atom jumps.Comment: Pour pages postscript formatted, including one figure; submitted to Physical Review B; other papers of interest can be found at url http://www.centrcn.umontreal.ca/~lewi

    Towards a first-principles theory of surface thermodynamics and kinetics

    Get PDF
    Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. To link these processes we combine state-of-the-art microscopic, and macroscopic phenomenological, theories. We apply our theory to the O/Ru(0001) system and calculate thermal desorption spectra, heat of adsorption, and the surface phase diagram. The agreement with experiment provides validity for our approach which thus identifies the way for a predictive simulation of surface thermodynamics and kinetics.Comment: 4 pages including 3 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Identification of the Carbon Antisite-Vacancy Pair in 4H-SiC

    Get PDF
    The metastability of vacancies was theoretically predicted for several compound semiconductors alongside their transformation into the antisite-vacancy pair counterpart; however, no experiment to date has unambiguously confirmed the existence of antisite-vacancy pairs. Using electron paramagnetic resonance and first principles calculations we identify the SI5 center as the carbon antisite-vacancy pair in the negative charge state (CSiVC-) in 4H-SiC. We suggest that this defect is a strong carrier-compensating center in n-type or high-purity semi-insulating SiC
    • …
    corecore